Lecture 7: More on Graph Eigenvalues, and the Power Method

نویسنده

  • Aditya Bhaskara
چکیده

We will discuss a few basic facts about the distribution of eigenvalues of the adjacency matrix, and some applications. Then we discuss the question of computing the eigenvalues of a symmetric matrix. 1 Eigenvalue distribution Let us consider a d-regular graph G on n vertices. Its adjacency matrix AG is an n× n symmetric matrix, with all of its eigenvalues lying in [−d, d]. How are the eigenvalues distributed in the interval [−d, d]? Are there always many negative eigenvalues? What is the typical magnitude of the eigenvalues? The key to answering these questions is the simple fact that the trace of a matrix is the sum of its eigenvalues. Since all the diagonal entries of AG are 0 The trace, denoted Tr(·), is defined to be the sum of the diagonal entries of a matrix. (the graph has no self loops), we have that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Main Eigenvalues of the Undirected Power Graph of a Group

The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...

متن کامل

Lecture 07 : Power Method for Top Eigenvalues

In the last lecture, we have proved the harder side of the Cheegar’s Inequality, i.e. the conductance of a graph is upper bounded by second smallest eigenvalue, in formula, ΦG ≤ √ 2λ2. To prove that we took any vector ~ X having the property ~ X ⊥ ~1 and Rayleigh Quotient R(LG, ~ X) = ~ XLG ~ X ~ XT ~ X = λ2 to construct a set so that the conductance of the graph is upper bounded by the inequal...

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

Lecture 14 : SVD , Power method , and Planted Graph problems ( + eigenvalues of random matrices )

Recall this theorem from last time. Theorem 1 (Singular Value Decomposition and best rank-k-approximation) An m × n real matrix has t ≤ min {m,n} nonnegative real numbers σ1, σ2, . . . , σt (called singular values) and two sets of unit vectors U = {u1, u2, . . . , ut} which are in <m and V = v1, v2, . . . , vt ∈ <n (all vectors are column vectors) where U, V are orthogonormal sets and ui M = σi...

متن کامل

COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q

A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016